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A parabolic equation governing the leading-order amplitude for a forward-scattered 
Stokes wave is derived using a multiple-scale perturbation method, and the connection 
between the linearized version and a previously derived approximation of the linear 
mild slope equation is investigated. Two examples are studied numerically for the 
situation where linear refraction theory leads to caustics, and the nonlinear model 
is shown to predict the development of wave-jump conditions and significant 
reductions in amplitude in the vicinity of caustics. 

1. Introduction 
For many applications to coastal and offshore problems, consideration of the 

surface wave field can be restricted to an initially plane wave moving in a given 
direction. I n  this case, parabolic-equation approximations can be constructed which 
consider only the unidirectional wave and the forward-scattered components arising 
from interaction with structures or inhomogeneities of the domain. The parabolic 
equation may be derived by employing a WKB-type expansion for the velocity 
potential representing a wave travelling in a prespecified direction ; substitution into 
the equations of motion and the assumption of slowly varying or constant depth then 
leads to  an equation governing modulations of the wave amplitude. Such an approach 
has been made (for linearized wave theory) by Liu & Mei (1976), who studied waves 
shoaling on a plane beach and interacting with shore-attached or shore-parallel 
breakwaters, and by Mei & Tuck (1980), who studied waves diffracted by slender 
obstacles in water of otherwise constant depth. 

Alternatively, Radder (1979) demonstrated a method for obtaining coupled 
parabolic equations for forward- and back-scattered waves by employing a splitting- 
matrix approach to the linear mild-slope elliptic model of Berkhoff (1972), given by 

where V, is a gradient operator in horizontal coordinates (x, y), w is the angular 
frequency, $(x, y) is a two-dimensional velocity potential obtained by factoring out 
the harmonic time dependence, and C and Cg are the phase and group velocities 
respectively. Recently, Liu & Tsay (19834 have described a method for obtaining 
the back-scattered wave by an iterative procedure, using coupled equations similar 
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to those obtained by Radder. Comparison of numerical applications of the linear 
parabolic method to laboratory data can be found in Lozano & Liu (1980). Berkhoff, 
Booij & Radder (1982) and Tsay & Liu (1982). 

Using the WKB expansion approach in the context of Stokes theory, Yue &, Mei 
(1980) obtained a parabolic equation for the propagation of weakly nonlinear Stokes 
waves in a specified direction in water of constant depth. The resulting nonlinear 
Schrodinger equation is given by 

1 
k 

2iA,+-Al/l/-K‘IA12L4 = 0, 

where x is the principal direction of propagation and A is a complex amplitude. In  
the present study we arrive a t  a more general formulation governing waves in a 
domain with slow but arbitrary depth variations. This nonlinear mild-slope equation 
is obtained in 9 2 by extending the multiple-scale perturbation expansion of Yue and 
Mei to the case of non-constant depth. Then, in $3, we demonstrate the connection 
between the resulting nonlinear parabolic equation and a linear model obtained by 
using Radder’s (1979) parabolic approximation of (1 .1) .  I n  $4 we present a numerical 
approximation using the Crank-Nicolson algorithm, and study two cases illustrating 
nonlinear amplitude modulations induced by topographic refraction. 

2. The parabolic approximation for refraction-diffraction 
We consider the combined refraction and diffraction of an initially plane Stokes 

wave with frequency w ,  reference wavenumber k,, and amplitude A,, approaching 
from - co at  a small angle to  the x-axis. The exact equations for the velocity potential 
$ and the free surface 7, assuming inviscid irrotational flow, are given by 

VZ$ = 0 ( - h  < z < v(r ,  y ,  t ) ) ,  (2.la) 

9$,+$tt+IV$l~+S(V$.V)IV$12 = 0 ( z  = 7 @ ? Y > t ) ) >  (2.16) 

$&+97+;IV$42 = 0 (2 = 7(x1y94L (2.lc) 

$ z  = -V,$*V,h  ( Z  = - h ( ~ , y ) ) .  (2 .14  

Here g is the gravitational acceleration and V represents the three-dimensional 
gradient opera tor. 

We proceed by performing a multiple-scale perturbation expansion and expanding 
the free-surface boundary conditions (2.1 b, c) about z = 0 in Taylor series. The 
derivation follows closely the work of Yue & Mei (1980). 

2.1. Lengthscales and perturbation expansions 

We seek a nonlinear equation governing the amplitude A of a modulated Stokes wave, 
whose potential may be written in the form 

where A is O ( E ) ,  E represents the Stokes-wave steepness parameter, and C.C. denotes 
the complex conjugate. k, is a reference wavenumber given by the initial conditions 
of the wave field. The water depth h is allowed to be a slowly varying function of 
the horizontal coordinates x and y ; consequently A must be allowed to  be a complex 
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function in order to absorb the difference between the reference phase k,x--wt and 
the actual phase $(k(x, y)). We choose two scales for x given by 

a a  
N -  

where x relates to the wavelike characteristics and X = 2 x  covers the slower spatial 
variations of the remaining term Af. It is assumed that no fast wave-like variations 
occur in the y-direction, consistent with the forward scattering approach ; A is allowed 
to vary a t  O ( E )  in the y-direction to account for slow modulations due to small but 
finite angles of propagation with respect to  the x-axis: 

(2.4) 

These scales form the basis of Yue & Mei’s approach. The problem is further 
considered to be steady; only fast derivatives in t ,  related to the frequency, are 
considered. 

A scale for vh h must be chosen in order to determine the point a t  which the term 
in v h  h enters the bottom boundary condition. I n  Chu & Mei (1970), Vh h is assumed 
to be O(e) ,  giving rise to primary solutions a t  0 ( e 2 )  which affect wave phase and speed 
through terms related to the changes in depth, amplitude and wavenumber. Here, in 
keeping with a mild-slope approximation, we restrict vh h to 0 ( e 2 )  ; the bottom is then 
effectively locally flat up to the third order in E .  Correspondingly, we allow 

where f is given by 
cosh k(h + z )  

cosh kh . 
f ( X ,  Y1,Z) = 

I n  the y-direction we define an additional scale Yl = e2y, so that 

This condition will be relaxed somewhat below 
Perturbation series of the form 

n 
$ = X en X $mn(r, y, z)eim@, 

n-1 m--n 

n 
7 = X en X ~ m n ( ~ , y ) e i m @ ,  

n-1 m--n 

(2.7) 

(2.8a) 

(2.8b) 

where $ =  r k d x - u t .  (2.9) 
J 

and k is a local wavenumber, are substituted into (2.1), giving a boundary-value 
problem in z for each order of m and n: 
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where F,,, G,,, H,,, B,, are determined by lower-order solutions. For n = 1 and 
2 ,  m = 1, the problems are homogeneous. The solution for $11 is given by 

ig $,, = --fA'ei$+c.c., 
2w 

(2 . l la )  

where C.C. is the complex conjugate and A' is referenced to  the local wavenumber, 

w2 = gk tanh kh. (2.11b) with 

Here k is based on the local value of h. The homogeneous solution & of identical 
form is neglected. At m = 1, n = 3, a homogeneous solution of the form (2.1 1 a )  arises 
for the inhomogeneous problem, leading to the solvability condition 

(2.12) 

as in Chu & Mei (1970). G,, is identical with the result in Yue & Mei, and can be written 
as 

DJA'I2 A', 
iw3k 

G -  
I, - 2 tanh kh 

cosh 4kh + 8 - 2 tanh2 kh 
8 sinh4 kh 

where D =  

B,, is new here, and is given by 

(2.13) 

(2.14) 

(2.15) 

while F13 is slightly modified from Yue & Mei (1980) to  include the spatial derivatives 

(2.16) 
of k and f :  

F13 = - 2 ~ l l X x - i k x $ 1 1 - $ l l ~ l . ~  

where i t  is understood that the slow X-derivative of q511 does not operate on k .  Note 
that, in deriving B,, and F,,, we allow f Y  to appear as a term a t  O ( E ) .  This has the 
effect of including a smaller term in the formulation, which is acceptable. In  addition, 
for a wave whose direction deviates significantly from x, the contribution of $llu 
approaches O(1);  in this extreme, the O ( 2 )  variation of fyl enters the scheme 
naturally. Finally, i t  will be shown that the inclusion of the O ( 2 )  quantity is 
consistent with a previously derived model. 

2.2. The approximate equation 

The governing equation for the forward-scattering parabolic approximation is 
obtained by substituting (2.13), (2.15) and (2.16) into the solvability condition (2.12). 
The boundary terms in B,, are cancelled by terms arising from Leibnitz differentiation 
in the integral of F,,. Performing the integral over depth and noting that 

(2.17) 

where C = w / k  and Cg = aw/ak ,  leads to a nonlinear equation governing the complex 
amplitude A' : 

2ikCCgA&+i(kCCg),A'+(CCg A&)Y-kCCgK(A'(2A' = 0, (2.18) 

where K =  k3 - D ,  (2.19) 
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A’ = Aei(koZ-SzkdZ), (2.20) 

as given in Yue & Mei (1980). The amplitude is now phase-shifted by the substitution 

yielding solutions of the form 

$ = --Af ig el(ko,:-wt)+c.c.+O(€2). ’ (2.21) 
2w 

Substituting (2.20) into (2.18) gives 

2ikCCg A ,  +2k(k -k , )  (CC,) A + i(kCC,), A + (CC,A,),- k(CC,) h” 1AI A = 0, 
(2.22) 

which is the final form for the parabolic approximation. 

3. Comparison with previously derived models and extensions 

(2.22) to the previously derived models of Radder (1979) and Yue & Mei (1980). 
I n  this section we explore the correspondence of the nonlinear mild-slope equation 

3.1. Parabolic approximation of Radder (1979), for linear waves 

Employing a splitting-matrix method described by McDaniel (1975) and Corones 
( 1 9 7 ~  Radder (1979) constructed a parabolic equation for 6 given by 

where $(x, y) is the potential a t  z = 0 governed by ( l . l ) ,  and where it is assumed that 
the waves are propagating a t  a small angle to  the +x-direction. Here coupling 
between forward- and back-scattered wave components has been neglected. After 

ig 
substituting for 6 by 

$ = --Ae%X, (3-2) w 

consistent with (2.21), (3.1) becomes 

2ikCCg A,  + 2k(k - k,) CC, A + i(kCC,), A + (CC, A,)u = 0, (3.3) 

which is identical with the result obtained by linearizing (2.22).  The nonlinear model 
is thus seen to correspond to the level of approximation obtained by using a splitting 
method on the more general (but linear) wave equation ( 1 . 1 )  which allows wave 
propagation in any direction. Conversely, i t  is seen that the approximations made 
in obtaining (3.1), embodied in Radder’s (1979) choice of splitting matrix, are 
consistent with the multiple-scale ordering scheme presented in 8 2. 

3.2. Pure diflraction 

Simplification of the nonlinear equation (2.22) to  the case of constant depth leads 
to  the nonlinear Schrodinger equation given by Yue & Mei (1980) : 

2ik, A, + A,, - k, h” (AI2 A = 0. (3.4) 

Yue & Mei showed that this equation predicts the essential features of the 
development of the Mach stem in the case of nonlinear waves incident a t  glancing 
angles on a vertical wall. Peregrine (1983) has shown that (3.4) may be cast in a form 
analogous to the equation governing the development of an undular hydraulic jump. 
The presence of a Mach stem thus indicates a jump discontinuity between two 
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conjugate wave states, with the jump to the conjugate state replacing the normal 
process of simple reflection and superposition in a linear wave field. 

4. Numerical examples of combined refraction-diffraction 
I n  this section we study several examples where the refraction approximation to 

linear theory predicts the occurrence of caustics and cusps of caustics, along which 
the amplitude is singular. It is well known that equations of the form (1 .1)  provide 
uniformly valid solutions in these regions due to the incorporation of diffraction 
effects (see Meyer 1979). I n  cases where the caustics are oriented at a sufficiently small 
angle to the computational direction x to allow for forward-scattered reflection into 
the computational domain, parabolic approximations also provide a qualitatively 
accurate approximation of the behaviour near the singularity for waves of low 
steepness (see Radder 1979; Berkhoff et al. 1982). For the case of the nonlinear model, 
the combined refraction-diffraction process may lead to the formation of wave jumps 
as in the constant-depth case, in regions where refraction leads to the superposition 
of rays and formation of singularities in the linear refraction approximation. 

4.1. Numerical approximations 

Both the nonlinear equation (2.22) and its linearized counterpart are approximated 
according to the Crank-Nicolson scheme. Application of the scheme to the nonlinear 
model (2.22) yields the difference equation 

where 

yj = (j- 1 )  Ay. (4.4b) 

The scheme (4.1) is used in an  iterative manner, where, for the first iteration, 
is given by A;. Then for the second iteration, Af+l is given by the intermediate value 
resulting from the first step. 

For the linear model (3.3) the nonlinear terms are dropped from (4.1), and the 
Crank-Nicolson scheme proceeds without iteration. 

Initial conditions for both models are given on x = 0 by 

A j = A o  ( i =  1 ,  1 < j < N ) ,  (4.5) 

implying normal wave incidence on the upwave grid boundary. The initial wave 
amplitude is given by A,,, and N is the number of grid points in the y-direction. The 
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lateral boundaries a t  y = 0, ( N -  1 ) A y  are taken to be reflective (either due to 
symmetry or for a boundary located far from the region of interest) 

which is approximated by 

In the case of an open boundary it is understood that computation will be terminated 
a t  a value of xi = ( M -  1) Ax before diffracted waves are significantly reflected back 
into the region of interest. 

4.2. Submerged circular shoal 

As a first example we study the case of a submerged circular shoal on a bottom of 
otherwise constant depth, studied by Radder (1979). Configuration 1 of Radder's 
paper is used, with 

- ho = 0.1875, - Lo = 0.5, hM = 0.0625, - 
R R R 

where R is the shoal radius and L, is the incident wavelength given by Lo = 2n/k,. - .  

The depth h is given by 
h = h,+e,r2 ( r  < R), ( 4 . 8 ~ )  

h = h, ( r  2 R), (4.8b) 

where r2 = ( x - - x M ) ~ +  ( Y - Y M ) ~ .  (4.8~) 

62, = (h, - hM)/R2. (4.8d) 

In this example the rays of a linear refraction approximation are focused into a 
cusped caustic. Peregrine (1983) has discussed the likely form of results for the weakly 
nonlinear approximation, and has shown that a situation analogous to the Mach stem 
studied above can occur, in which two jumps in wave conditions fan out in 
approximately the same manner as the caustics emanating from the region of the 
cusp. The region between the jump conditions, directly in the lee of the submerged 
shoal, would then be dominated by waves of approximately uniform amplitude 
propagating in the incident-wave direction. 

For the shoal studied here, the constant-depth region r 2 R is characterized by 
k, h, = 2.36. The variation of the normalized amplitude along the line of symmetry 
y/R = 0, where x is the incident wave direction, is shown in figure 1 for values of 
k, A, = 0.16 and 0.32, and for the linear theory. For both cases, it significant reduction 
of the maximum amplitude in the neighbourhood of the cusp is seen, with the 
reduction increasing with nonlinearity. In  figure 2 the normalized amplitude in the 
y-direction is plotted for the initial value k, A,  = 0.32 a t  locations x / R  = 2.9,4.2,5.5 
and 6.8. The results clearly show the growth of a central region bounded by jumps 
located on the + y and - y sides. These results are in qualitative similarity with the 
results of the Mach reflection studied by Yue & Mei, with the exception that the 
presence of intersecting wavetrains is induced by refraction of the incident wave 
rather than reflection. A weaker jump was also noted for the less-nonlinear case 
k, A ,  = 0.16, with the jumps spreading a t  a smaller angle to the x-axis and with larger 
wave amplitude in the central focused region. For smaller initial wave steepnesses, 
the results are qualitatively similar to the linear results presented in figure 2. 
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FIQURE 1.  Circular shoal; amplitude along centreline: ---, linear result; -.-.-, 
k,A,  = 0.16; -, k,A,  = 0.32. 

Owing to the large angle formed between the wave jump and the x-axis for the 
case of k, A,, = 0.32, insufficient wave energy is incident on the wedge between the 
jumps to maintain the amplitude of the jump. This result is qualitatively similar to 
the results presented by Yue (1980) for waves in the vicinity of a curved wedge of 
parabolic form which bends away from the initial jump, where the distance between 
the wall and nearly straight jump boundary increases too rapidly for the maintenance 
of uniform amplitude and a partial shadow is formed adjacent to the wall. Wave 
energy near the jump is thus gradually diffracted into this region, resulting in a region 
of low waves in comparison to  the vicinity of the jump. 

4.3. ReJlection from a linear caustic 

As a second example we study the incidence of a plane wave in constant water depth 
on a symmetric wedge-shaped depression, with sides sloping down from the constant- 
depth region. The line of symmetry is taken as y = 0. The boundary of the depression 
is given by 

yb = x t a n a ,  (4.9) 

where a is the wedge angle, and where x = 0 represents the tip of the wedge, and the 
bottom slopes down with a slope of 1 :50 normal to the boundary. The maximum 
depth of the depression is given by 2h,. The incident wave is characterized by 
k, h, = 1 .O in the constant-depth region outside the wedge. For the cases considered, 
a caustic of the linear wave field occurs on the sloping boundary, and, in the far field 
(x large) the wave field in the vicinity of the caustic would he described by an Airy 
function, with an exponentially decaying amplitude in the geometric shadow and 
total reflection of the incident wave. The corresponding result for weakly nonlinear 
waves would be a qualitatively similar description in terms of the second PainlevB 
transcendent (Miles 1978). However, Peregrine (1 983) has suggested that the 
development of a wave field in the vicinity of the caustic may be greatly dependent 
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FIQURE 2. Normalized amplitude vs. distance from centreline; circular shoal : ---, 

linear result; -, k,A,  = 0.32, solution of (2.22). 
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on the initial conditions, and the asymptotic state in qualitative similarity to the Airy 
function of linear theory may not result, particularly in the event that a jump 
condition with little or no reflection of the incident wave occurs. 

As a test of this hypothesis, two geometries given by a = 1 5 O  and a = 25" were 
tested, with incident wave steepnesses of k,  A,, = 0.1 and 0.2. Results for a = 1 5 O  and 
a = 25" are presented in comparison to linear theory in figures 3 and 4 respectively, 
where normalized amplitude perpendicular to the line of symmetry y = 0 are plotted 
for k , z  = 40, 80, and 120. For the case of a = 15" and k ,  A ,  = 0.1 (figure 3a) ,  the 
nonlinear wave field evolves in a qualitatively similar manner to the linear waves, 
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with the presence of a reflected wave and a relatively slight reduction of wave 
amplitude in the neighbourhood of the caustic being apparent. For a = 1 5 O  and 
k, A ,  = 0.2 (figure 3 b ) ,  however, the reflected wave is not as apparent, and a broad 
region of waves which are slightly higher than the incident wave develops in the 
vicinity of the caustic. In addition, wave amplitude decays much more slowly in the 
linear shadow zone. 

The result of nonlinearity is even more accentuated in the results for a = 25', where 
little reflection of the incident wave is apparent for either incident steepness. In order 
to accentuate the qualitative differences between the linear and nonlinear results, 
plots of the instantaneous surface for the linear result and for k, A, = 0.2 are given 
in figures 5 and 6 respectively, for a wedge angle of a = 25'. It is apparent in figure 
6 that a broad wave crest travelling parallel to the caustic region has developed. 
Peregrine (1983) argues that this wave crest must continue to grow in width since 
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(a) (b ) 
FIGURE 4. Submerged depression, a = 25O. Plot of normalized amplitude vs. distance from centre 

of depression: (a) koAo = 0.1; (6) k,A, = 0.2; ---, linear theory; -, solution of (2 .22) .  

the wave energy flux continually incident on the jump boundary cannot be balanced 
by the flux in a jump of constant width and height unless total reflection of the 
incident wave occurs. It is therefore unlikely that the wave field will evolve into its 
asymptotic state. 

A possible explanation for the relatively stronger nonlinear effect in the a = 85" 
cases as compared to the a = 1 5 O  cases lies in the increased amount of time (or 
distance) that the a = 25' wave must spend in the vicinity of the caustic as it is turned 
and reflected by the refraction process. Results not presented here indicate a similar 
increase in nonlinear effect when the slope of the bottom is decreased, leading to a 
spatially slower refraction process and longer residence of waves in the vicinity of 
the caustic. 
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FIGURE 5. Instantaneous surface, linear theory. Contour increments are 0.5A0. Inclined line 

indicates location of top of slope. 

5. Discussion 
We have shown that the effects of amplitude dispersion and weak wave-wave 

interaction can significantly alter the structure of a wave field in the vicinity of 
caustics of the linear theory, where amplification of the incident wave leads to the 
onset of nonlinear behaviour. In  particular, the wave jump between two adjacent 
wave states, as described by Peregrine (1983) and documented clearly in the 
Mach-reflection results of Yue & Mei (1980), is seen to occur in several situations where 
refraction leads to the presence of wavetrains intersecting at  small angles. These 
results have implications for the prediction of wave fields in nature, where irregular 
bottom topography and current distributions routinely lead to caustics or irregular 
focusing in the ray approximation. Since principal interest is often focused on the 
potential effects of storm waves with large steepness, it is possible that the ray theory 
or even the linear refraction-diffraction correction would result in misleading 
predictions in some instances. 
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FIGURE 6. Instantaneous surface, koAo = 0.2, solution of (2.22). 

The present theory is, of course, not without its limitations. A principal limitation 
is that  the Schrodinger equation should correctly be used to study modulations 
occurring over a large number of wavelengths; situations where focusing occurs over 
the space of only several wavelengths are known to produce free harmonics as the 
dominant nonlinear effect, and these are not represented in the present theory. Also, 
the neglect of time dependence of A and the imposition of the slow (O(e2)) scale for 
variations in the direction of propagation precludes the study of wave instabilities, 
such as that of Benjamin & Feir (1967), which may be induced either by the fairly 
rapid changes in wave conditions a t  the location of jumps, or by the slow, 
refraction-induced wave modulations occurring over a slowly varying bottom. 

Very little controlled laboratory data exists for the testing of the above predictions. 
The Mach reflection has been the most heavily investigated phenomenon; see the 
article by Wiegel (1964) for early results. I n  the case of waves in the vicinity of 
caustics, most experimenters have studied small-amplitude waves with the intent of 
verifying linear wave models: a similar effort may be required in order to provide 
results applicable to nonlinear models. Several data sets exist which describe waves 



466 J .  T .  Kirby and R. A .  Dalrymple 

focused into a cusped caustic by submerged shoals ; these experiments are typically 
constrained by basin dimensions, and the experimental regions of focused waves 
typically develop over a small number of wavelengths. Despite this seeming violation 
of the scaling assumptions involved in the parabolic approximation, preliminary 
indications are that the parabolic equation is capable of accurately modelling wave 
amplitudes in regions of relatively rapid focusing. Comparisons with the dat,a of 
Whalin (1971) (Liu & Tsay 1983b) and Berkhoff et al.  (1982) will be the subject of 
subsequent investigations. 

This work was sponsored by the Office of Naval Research, Coastal Sciences 
Program. The authors would like to thank Dr D. Howell Peregrine for providing a 
copy of his manuscript, which provided explanations for several of the effects that 
were studied here from a purely numerical basis. The authors would also like to 
acknowledge Prof. Philip L.-F. Liu for his discussions on the subject. 
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